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Abstract— Automatic epileptic seizure prediction from EEG
(electroencephalogram) data is a challenging problem. This
is due to the complex nature of the signal itself and of the
generated abnormalities. In this paper, we investigate several
deep network architectures i.e. stacked autoencoders and con-
volutional networks, for unsupervised EEG feature extraction.
The proposed EEG features are used to solve the prediction of
epileptic seizures via Support Vector Machines. This approach
has many benefits: (i) it allows to achieve a high accuracy using
small size sample data, e.g. 1 second EEG data; (ii) features
are determined in an unsupervised manner, without the need
for manual selection. Experimental validation is carried out
on real-world data, i.e. the CHB-MIT dataset. We achieve an
overall accuracy, sensitivity and specificity of up to 92%, 95%
and 90% respectively.

I. INTRODUCTION

Epilepsy is a neurological disease characterized by re-
current, involuntary seizure activity which leads to either
observable clinical or subclinical symptoms. These seizures
are caused by groups of abnormal functioning neurons spread
out or localized in different regions of the brain. Placing
the diagnostic of epilepsy requires both the observation of
clinical symptoms and a more in-depth study of the brain’s
activity during suspected epileptic episodes.

The electroencephalogram (EEG), i.e., the recording of
the electrical activity of the brain, provides such a di-
agnostic tool. All EEG based diagnostic methods require
expert manual post-processing for selection of suspected
epileptic segments. The procedure is cumbersome and time
consuming. A robust algorithm for the automatic detection
of epileptic seizures could reduce drastically the time needed
for selecting suspected seizure segments from recorded data.

In this paper, we address the automatic classification of
seizure and non-seizure EEG data. The automatic classifi-
cation of seizure and non-seizure EEG data proves to be
a challenge even today due to the complex nature of the
phenomena and the underlying physiological signal. Seizure
activity can be localized to specific regions of the brain or
even specific subgroups of neurons. This would translate
differently on the recording electrodes present all over the
scalp or mounted invasively in different regions of the brain.
Inter-subject variability is also high, both in the healthy and
the epileptic EEG.
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The remainder of the paper is organized as follows. Sec-
tion II overviews the current state of the art and positions our
contribution. Section III introduces the proposed approach
for automatic prediction of epileptic seizures. Section IV pro-
vides the experimental validation and discusses the results.
Section VI concludes the paper.

II. PREVIOUS WORK

Automatic seizure detection has been extensively re-
searched since the ’80s. Early works focused on threshold-
based non-patient specific algorithms for seizure detec-
tion [1]. Due to the variability observed in seizure data, the
focus switched to patient-specific models.

The complexity of the pre-processing techniques increased
and these methods were combined with more advanced,
supervised classification algorithms. The reference work
from [2] introduces the CHB-MIT database and presents
a patient specific algorithm based on an Support Vector
Machine (SVM) radial basis kernel classification. The over-
all sensitivity was 96%, tested in a leave-one-out cross-
validation. One of the disadvantages of such a method is the
necessity of manual feature selection. Unsupervised learning
techniques provide more possibilities for extracting relevant
features.

Due to their success in image processing tasks, Neural
Networks (NN) have been adopted also in the field of
EEG signal processing. Converting EEG data into frequency
domain maps before using it as an input for a probabilistic
neural network is proposed by the authors in [3]. A con-
version to the frequency domain using short-time Fourier
transform is used by the authors in [4] as input to a deep
convolutional neural network. This approach achieves 81.2%
sensitivity on the CHB-MIT database. The authors in [5]
use all EEG channels to create a mutual information matrix
of seizure and non-seizure signals which are then fed into
a deep network with five convolutional layers and three
fully connected layers. The approach was tested in a 5-fold
cross-validation scenario on the CHB-MIT database, with
a resulting accuracy, sensitivity and specificity of 98.13%,
98.85% and 97.47%, respectively. Another relevant approach
is the one proposed in [6]. A stacked autoencoder with two
hidden layers and one output layer as a logistic regression is
built. Using a leave-one-record-out cross-validation method,
a sensitivity of 100% was achieved on two patients from
the CHB-MIT database. Similarly, a sparse autoencoder is



used by the authors in [7] to create an EEG dictionary for
a context-learning model. The method has an error rate of
22.93%. The authors in [8] reported a stacked autoencoder
deep neural network architecture with two sparse encoders.
The results obtained included an accuracy, sensitivity and
precision of 94%, 93% and 95% respectively.

In this work, we investigate the use of Stacked Autoen-
coders (SAE) and Convolutional Neural Networks (CNN) for
unsupervised EEG feature extraction. We propose a network
architecture composed of three convolutional and four fully
connected layers which are fed to an SVM to achieve the
final data classification. The proposed architecture is able
to provide high accuracy prediction using samples of only
one second length. Previous techniques that used frequency
representations of the data would not have been possible
with such a narrow time window. In addition, the proposed
system does not require any pre-processing or conversion of
the input data. Unsupervised learning techniques provide the
great advantage of extracting adequate features from the data.
Unlike classical methods where the experimenter manually
selects the adequate features, the proposed methods learn and
adapt from the data itself. This makes the approach more
reliable and ready to use in real-world scenarios, where the
data is not previously known.

III. PROPOSED APPROACH

A. Autoencoders

An autoencoder is a type of unsupervised neural network
that can be used for feature extraction. A sparse autoencoder
has one hidden layer in between the input and the output.
By forcing the size of the output to be the same as the input,
the network is forced to extract features in the hidden layer
that enable it to reconstruct the input at the output. A stacked
autoencoder is created by placing several sparse autoencoders
on top of each other [9].

After experimenting with several architectures, we inves-
tigate the use of a six layer stacked autoencoder. The first
three layers encode the input according to the size of each
layer. Unsupervised feature representations are extracted at
each phase. Layer 3 represents the coded input. The next
two layers represent the decoding of the coded input, while
the last layer is the reconstructed input. All layers are fully
connected. A graphical representation of the network model
is presented in Fig. 1. A ReLU (Rectified Linear Unit)
activation was used for all autoencoder layers, except for
the last which used a sigmoid activation. ReLU activation
improves the network performance [10], while the sigmoid
activation allows the output layer to take both positive and
negative values.

The features extracted after each layer of the encoder are
fed into an SVM classifier for classification into seizure and
non-seizure EEG segments.

B. Proposed Network Architecture

Based on the results obtained with the unsupervised fea-
ture extraction from three fully connected layers, we propose
a new network architecture that also integrates convolutional

Fig. 1. Architecture of a Stacked Autoencoder for feature extraction
combined with SVM for classification.

Fig. 2. Proposed network architecture combining convolutional (Conv.)
and fully connected (FC) layers.

layers. The additional convolutional layers added before the
fully connected layers provide supplemental filtering to the
EEG data. After the first three convolutional layers, the data
is flattened. An additional layer of size 1 is added to the
output of the network to reduce the dimensionality of the
calculated features. Its reduced output is fed to an SVM
classifier for seizure/non-seizure segment prediction. Fig. 2
shows the proposed network architecture.

Unlike the work in [5] and [4], where authors use similar
network architectures with 2D inputs, the first three layers
of our proposed network are 1D convolutional layers and
require no data reconfiguration. For the convolutional layers,
the filter numbers increase per layer (32, 64, 128) with the
kernel size remaining 2.

IV. EXPERIMENTAL VALIDATION

A. Test Dataset

For the evaluation, we use the CHB-MIT dataset [2], [11].
Given its open source availability, the dataset is one of the
most used in the evaluation of algorithms for automatic
seizure detection. The data was collected at the Boston
Children’s Hospital and contains scalp EEG data from 24
patients. The EEG signals were collected at a sampling rate
of 256 Hz with a 16-bit resolution. In most cases, 23 EEG
channels were recorded based on the 10-20 International
Electrode Positioning System. The data was provided with
annotations of seizure events.



TABLE I
VARIATION IN THE LAYER SIZE OF THE DEEP STACKED AUTOENCODER

Network Layer 1 Layer 2 Layer 3
Deep Stacked Autoencoder 1 (SAE1) 128 64 32
Deep Stacked Autoencoder 2 (SAE2) 500 1,000 1,500

Seizure and non-seizure EEG segments of equal length are
selected from previously annotated data. From each marked
seizure onset an equal number of samples are selected
prior to the annotation point (non-seizure segment) and after
the annotation point (seizure segment). By selecting the
same number of seizure and non-seizure EEG segments, the
dataset can be considered balanced. No filtering and no pre-
processing is applied. All available channels are considered
as part of the database for classification.

B. Evaluation method

Evaluation of the proposed algorithm was performed per
subject (for all 24 available recordings) using a leave-one-
record-out cross-validation approach. Assuming that N EEG
segments (seizure and non-seizure data) are available, N −1
segments are used for the training of the model, while the
remaining segment is used for its testing. The data is per-
muted into N different such train and test sets. The number
of segments N depends on the total number of seizures
annotated for each recording. Each result is attributed a
true positive, true negative, false positive and false negative
value. The metrics for evaluation are globally computed per
patient. These are accuracy, sensitivity and specificity [12].
Sensitivity measures the amount of seizures that are predicted
as seizures, while specificity provides information on the true
negative rate.

C. Parameter tuning

1) Autoencoder: In testing the proposed deep stacked
autoencoder architecture, several parameters were varied: (i)
the input window size, (ii) the size of the autoencoding
layers, (iii) the number of dropout layers after each encoding
layer. Variations in the proposed layer architecture were
evaluated through the metrics described in section IV-B.
These were computed per subject and the mean across all
subjects is reported.

The input window size was varied from 1s, 3s, 5s and
20s for each architecture for testing purposes. In all cases,
the performance of the models increased with an increase of
the window size. A 20 second window results in the best
performance, but depending on the network architecture, a 1
second input window can also be acceptable.

The layer sizes were changed according to Table I. The
first network - Stacked Autoencoder 1 (SAE1) - decreases
the size of the encoding layers, concentrating the coded
input into only 32 points. The second network - Stacked
Autoencoder 2 (SAE2) - expands the layer nodes, layer 3
being three times as large as layer 1. The decrease and
increase in the layer size is the same for each window size
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Fig. 3. Achieved performance varying the input window size for SAE1.
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Fig. 4. Achieved performance varying the input window size for SAE2.

used as input. Performance measures for the two network
models are presented in Fig. 3 and 4. The expanding SAE2
provides overall better results when compared to SAE1 for
all input window size variations. When using the first layer
for feature extraction, the results are better than for the
second and third layer.

The high number of output parameters obtained from the
deep layer might slow down the computation and might
introduce overfitting. To avoid these problems, dropout layers
can be used [13]. For 1 second of input data the performance
of SAE1 and SAE2 are tested by adding dropout layers with
a dropout rate of 0.6 after each encoding layer. When adding
dropout layers to SAE2 the performance slightly increases,
while for SAE1 it decreases. This is to be expected as
SAE1 compresses the input information and dropping some
of these values would mean eliminating useful information.
Whereas for SAE2, the input information is expanded in the
encoding layers, creating irrelevant parameters. The dropout
layer trims some of the additional information (see Fig. 5).

Our experiments show that optimal autoencoder design
for seizure and non-seizure segment classification is that of
SAE2 with dropout layers after each encoding layer. The best
performance is obtained on a 20s input window, but smaller
input window sizes provide higher performances than in the
case of SAE1.

2) Proposed network architecture: The proposed deep
convolutional neural network architecture for feature extrac-
tion is also tested with respect to the input window size
variation and the size of the fully connected layers. The input
window size is varied similarly on 1s, 3s, 5s and 20s time
windows. Fully connected layer sizes are either decreased
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Fig. 5. Achieved performance when dropout layers are added after each
autoencoder’s layer for SAE1 and SAE2 (input data is of 1 second).
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Fig. 6. Achieved performance for different fully connected (FC) layer
sizes: FC decreasing (128, 64, 32) and FC constant (128, 128, 128).

(128, 64, 32) or kept constant at 128 nodes. Fig. 6 presents
the overall mean metrics for all subjects on the two network
architectures. Increasing the number of nodes to 128 for all
fully connected layers does not bring improvements to the
results. Thus maintaining the first fully connected network
configuration provides sufficient performance with a smaller
number of computations.

V. RESULTS AND DISCUSSION

All testing and evaluation was performed on the CHB-
MIT database. The summary of the results of both the
stacked autoencoder and the proposed convolutional neural
network architecture (with an input window of 20 seconds)
are presented in Table II. The mean metrics over all individ-
ualized models are presented along with the results of the
best performing individualized patient models. The SAE2
algorithm showed best results on patient 19, whereas the
CNN-FC on patient 7. Although on specific individualized
models SAE2 has slightly higher accuracy and sensitivity
values, the convolutional neural network based architecture
performs better over the entire patient data set.

Fig. 7 provides more information on the variation of
the CNN-FC method performance over the entire data set.
Sensitivity is the most relevant metrics of the three used as
it indicates the ability of the classifier to detect the true pos-
itives. Overall, less variation in sensitivity and performance
is observed when compared to our previous study [14].
Our previous study used manually extracted wavelet-based
features on 20s input windows. This was fed to an SVM

TABLE II
SEIZURE AND NON-SEIZURE SEGMENT CLASSIFICATION

Network Accuracy % Sensitivity % Specificity %
SAE2 - mean 86.21 90.10 82.31

CNN + FC - mean 92.12 94.90 89.75
SAE2 - S19 97.82 100 95.65

CNN + FC - S7 97.10 98.50 95.77
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Fig. 7. Variation of the sensitivity of the individualized CNN + FC network
model across different input window sizes. Each boxplot represents the
variation in sensitivity obtained from the entire database for individualized
models with different input time windows.

classifier, in a standard supervised learning approach. In our
previous work, a high variation in classification accuracy
was obtained for individual patient models. These accuracies
ranged from 50% for some of the patients to above 90% for
others. Using the CNN-FC method, the inter-subject variation
of the performance metrics is reduced. When using 20s as
input window, the sensitivity over the entire database for
individualized models is between 85-100%.

Fig. 8 shows the features created by the model when
using a 1s and 20s input. When increasing the input window
size, the features are better separated between seizure and
non-seizure EEG segment which is also reflected in the
performance measures.

The variation in sensitivity of the model across the
database decreases with an increase in input window size.
Although the mean sensitivity for a 1s input window is
lower than that obtained with a 20s input window, it is still
sufficiently high (85%) and comparable to other values found
in literature ([4] - 81.2%, [5] - 98.85% , [6] - 100%). A trade
off exists between selecting the input window size and the
obtained performance.

The biggest advantage of using unsupervised feature learn-
ing methods such as the proposed stacked autoencoder or
the 1D based convolutional neural network is the small
amount of input data required for classification. For smaller
input window sizes, higher time resolutions are possible in
applications requiring automatic annotation of data. Epileptic
seizures can last for several minutes or seconds. Epileptiform
discharges with duration smaller than 10s can be in some
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Fig. 8. Features obtained as the output of the CNN-FC network for 1s and
20s input seizure and non-seizure EEG segments.

cases observed on the recorded EEGs. Using shorter time
windows can be beneficial in a more precise identification
of such events in large amounts of data. When compared to
classical manual frequency feature extraction techniques [3]
or even CNN based methods that require 2D inputs [4], our
method provides equivalent performance with smaller input
windows. A 30s window is required for computing the Short
Time Fourier Transform used as input for the CNN based
method proposed in [4]. The mutual information based image
creation described by the authors in [5] requires 8s EEG seg-
ments as input. The autoencoder used in [7] also reduced the
amount of input data to 3s samples. The algorithm proposed
by the authors in [6] also uses a stacked autoencoder on 1s
of input EEG data. The reported sensitivity is of 100%. The
algorithm was tested only on two patients from the CHB-
MIT database and furthermore requires manual threshold
adjustments. The choice of the network architecture and of
the input time window used should be a balance between
the required time resolution and performance. Several other
deep neural network algorithms have been developed and
tested for the detection of epileptic seizures. However, these
are evaluated also on different available data sets. The recent
work presented in [15] uses a 13 layer CNN with resulting
in a sensitivity of 95%. These values cannot be compared to
our results as the input data was different.

VI. CONCLUSIONS AND FUTURE WORK

In this article we investigated the use of stacked autoen-
coders and CNN based network architectures for unsuper-
vised feature extraction, with the objective of automatically
detecting seizures from EEG data. We proposed a network
architecture composed of three convolutional layers followed
by four fully connected layers for feature extraction. The
output is fed to an SVM classifier for the final prediction.
Experimental validation was carried out using the CHB-
MIT dataset. Results show the advantage of this approach
leading to an accuracy of 92.12% as a mean over all
the individual models, with the highest individual model
accuracy of 97.82%. A high accuracy was maintained even
with a small amount of input data.

As a point of improvement for the current work, our
algorithm should be tested on multiple EEG databases for
a better evaluation of performance. At the moment, all

available EEG channels are used as input for the models.
Channel selection might improve the performance of the
classification. Moreover, unsupervised features can be used
to improve channel selection methods. The proposed CNN-
FC network architecture might be further improved through
adding additional network layers. It is possible that similar
performances can be obtained with smaller network layers.
Our future work will focus on the development of a gen-
eralized, non-patient specific model with sufficiently high
performance and low input data requirements.
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