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Abstract—Parkinson’s disease (PD) patients display abnormal 

gait patterns with impairments and postural instability. In this 

paper, we propose an automatic system for extracting gait 

parameters. Various features were extracted from force sensors 

and analyzed using a threshold-based algorithm and machine 

learning techniques with the objective to identify the most 

significant features that would best characterize the presence of 

the disease. A machine learning algorithm using support vector 

machine method was developed to identify the presence of the 

disease. The analyses of the results show that the machine 

learning algorithm has the best accuracy of 100% in 

distinguishing between the two groups when looking at features 

based on stride, swing and stance phases. 

Keywords—Parkinson’s disease detection, gait analysis, 

machine learning. 

I. INTRODUCTION 

Parkinson's disease (PD) is a slowly progressive 

neurodegenerative disorder that mainly affects people over the 

age of 60. It is ranked the second most common 

neurodegenerative disease next to Alzheimer’s disease [1]. 

The main motor symptoms are caused by the deterioration of 

dopamine-producing neurons. Typically, a patient with PD 

presents the following symptoms: tremor and bradykinesia 

(slowness in movement) at an early stage and gait disorders 

and postural instability with the worsening of the disease.  

It is important to determine the tremor and gait disorders 

because the order in which the symptoms appear differs from 

one patient to another. Diagnosis of PD can be difficult, 

especially in the early stages. There is currently no special test 

or biomarker available for diagnosis. Abnormal gait 

characteristics that describe PD and were considered in this 

study are:  

(i) Heel to toe characteristics – while in normal gait the heel 

strikes the ground before the toes (heel to toe walking), in PD 

gait stepping is characterized by flat foot strikes (the entire 

foot is placed on the ground at the same time) or heel walking 

(toes touch the ground before the heel) in more advanced 

stages of the disease [2]. Furthermore, patients with PD have 

reduced impact at heel strikes. Therefore, the forces exerted on 

the ground are lower than the forces exerted by a healthy 

subject;  

(ii) Vertical ground reaction force (VGFR) – the vertical 

ground reaction force signal has two peaks in normal gait – the 

first one when the foot strikes the ground and the second peak 

corresponding to the push-off force from the ground. PD gait 

is characterized by reduced forces for heel contact and the 

push-off phase. The VGRF signal has peaks with reduced 

height [2];  

(iii) Bradykinesia – describes the slowness of movement. 

Patients with PD present a lower movement speed than normal 

subjects and their gait is characterized by smaller steps [3].  

In this paper, we aim to automatically detect PD patients 

from healthy subjects by using automatic machine learning 

techniques and analyzing heel to toe characteristics, vertical 

ground reaction forces and bradykinesia from recorded force 

signals characterizing gait. The paper is organized as follows. 

Section II presents the overview of the literature and positions 

our contribution. Section III describes the proposed 

approaches. Section IV deals with the analysis of the data and 

discusses the experimental results. Finally, Section V 

concludes the paper and discusses future work. 

II. PREVIOUS WORK 

Over time, many research studies have developed different 
systems for PD monitoring using different types of sensors, 
feature sets and methods of analysis. A large number of 
techniques have been developed for the automatic detection of 
PD using different methods based on machine learning 
algorithms such as neural networks or support-vector machines 
(SVM). Many techniques present algorithms for a single 
symptom detection. Given the heterogeneous nature of PD 
symptoms, this is in most cases not sufficient; few studies 
focus on detecting multiple motor symptoms. 

For instance, Barth et al. [4] studied and compared the gait 
pattern of normal subjects and PD patients. They used different 
types of classifiers. Among the classifiers used, LDA (Linear 
Discriminant Analysis) provided the best classification with a 
sensitivity of 88% and a specificity of 86%. In the experiments 
conducted by Salarian et al. [5] the results showed that the 
stride length, stride velocity and swing time of Parkinsonian 
patients were lower than those of healthy subjects. Also, they 
discovered that the stance time in Parkinson’s patients was 
higher in comparison to healthy subjects. Using a force sensor 
worn by the subjects, Okuno et al. [6] obtained similar results. 
Further, Tahir and Manap [7] extracted kinetic and kinematic 
features based on force measurement. Features include the step 
length, stride time, walking speed, vertical ground reaction 
forces at heel and toe contact, and the kinematic features as the 



angle of ankle, knee and hip at heel strike and toe off position. 
Statistical analysis showed that step length, walking speed and 
VGRF were among the significant features that would 
differentiate a PD patient from normal subject. Frenkel-Toledo 
et al. [8] studied and compared the walking speed and gait 
variability between PD and normal subjects. The result was 
that the PD patients had an increased variability of stride time 
and swing time as compared to normal subjects.  

The goal of this paper is to analyze the features extracted 
from gait measurements which would lead to the detection of 
PD. When combining multiple features extracted from the gait 
signals, we obtain better results than those presented in 
literature. 

III. PROPOSED APPROACHES 

A.  Overview  

The input data consists of vertical ground reaction force 

records of subjects as they walked at their usual, self-selected 

pace for approximately 2 minutes on level ground. Data 

processing was carried out in several stages as presented in the 

diagram from Figure 1. The pre-processing stage consisted of 

filtering data using a highpass filter. Features were extracted 

from vertical ground reaction force records. Classification was 

made in two classes – PD patients and healthy subjects. The 

last stage consists of the validation of the classification model.  

A gait cycle consists of two phases: swing and stance 

phases. The stance phase represents 60% of the gait cycle and 

it begins with the initial contact - the heel strike and ends in 

the toe-off event. The swing phase represents 40% of a gait 

cycle and it contains the moments when the foot is not in 

contact with the ground. In this paper, the swing and stance 

phases were identified. They represent parameters for PD 

detection. In the following we detail each of the processing 

steps.  

B.  Extracting PD characteristics from Gait  

1) Pre-processing. In the pre-processing phase, the data, 

which includes all the three experiments, was filtered using a 

Chebyshev type II high-pass filter with a cut-off frequency of 

0.8 Hz to remove the noise obtained from the changes in 

orientation of the subject’s body and other types of low 

frequency noise.  

2) Feature Extraction. The filtered signal was used to 

extract a series of gait parameters using peak detection 

methods and duration detection algorithms. From the peak 

detection algorithm, various kinetic parameters were 

extracted. Duration detection algorithms have been developed 

for extracting temporal and spatial parameters. An overview of 

the extracted features is available in Table I.  

For the determination of several parameters, only the left 

foot was taken into consideration. An example of VGRF 

signal is presented in Figure 2. To eliminate the effect of gait 

initiation, first seconds of VGFR were discarded. In Figure 3, 

VGFR are plotted against time for the left foot. Points P1-P4 

are plotted to mark a gait: P1, P4 – heel strike, P2 – maximal 

weight acceptance, P3 – toe off. The period between P1 and 

P4 represents the stride time (double step). Additionally, the  

 

 
Figure 2. Force reading for a patient with PD. Points P1-P4 mark a gait cycle: 
P1, P4 – heel strike, P2 – maximal weight acceptance, P3 – toe off.  

TABLE I. List of features extracted from the vertical ground reaction force 

data. 

Features  Description  

Step length (m)  The distance measured from the heel print of one 

foot to the heel print of the other foot.  

Step time (sec)  The time needed to take a step.  

Stride length (m)  The distance between two successive placements 
of the same foot.  

Stride time (s)  Time needed to complete a gait cycle (stride).  

Swing phase (%)  The phase during which the foot is not in contact 

with the ground.  

Stance phase (%)  The phase during which the foot remains in contact 
with the ground.  

Cadence (steps/min)  The rate at which a person walks.  

Heel force (N)  The force printed on the ground during the heel 

strike.  

Maximal weight 

acceptance force (N)  

The force printed on the ground during the period 

during early stance phase at which the knee is fully 

extended and accepting the full weight.  

Mid-stance force (N)  The force printed on the ground the time in which 
the entire foot is in contact with it.  

Push off force (N)  The force printed on the ground during the 

terminal stance phase.  

Toe force (N)  The force printed on the ground at the beginning of 

swing phase.  

 

time between P1 and P3 represents the duration of the stance 

phase and the time between P3 and P4 represents the duration 

of swing phase. 

3) Ground reaction force. By processing the force readings 

using peak detection and sequence detection methods, all the 

forces corresponding to each phase of the foot in contact with 

the ground were extracted. These included heel contact, 

maximal weight acceptance, mid stance, push off and tow off 

as depicted in Figure 3. These are further described in Table 

II. The forces were normalized by the weight of each patient.  

C. Classification  

1) Threshold-based PD detection. An initial threshold 

based algorithm was developed for PD detection. Threshold 

values extracted from literature were applied to the computed 

features [13] [14]. The threshold values are detailed in Table 

III. 

 
Figure 1. Data processing stages. 



 

Figure 3. The vertical ground reaction force acting on a healthy patient during 

the gait cycle. Representation of all the forces corresponding to each phase of 
the foot in contact with the ground.  

 

TABLE II. Detection methods for all the forces corresponding to each phase 

of the foot in contact with the ground 

Force Method to identify it 

Heel force  

Is identified at the beginning of the support phase and 

represents the start of the heel attack. Its value is found 
by identifying the force that succeeds the balance phase 

of the same foot in which the vertical force acting on 

the ground is 0 (swing phase)  

Maximal weight 

acceptance force  

Peak detection method.  

Mid-stance force  Peak detection method.  

Push off force  Peak detection method.  

Toe force  

Represents the beginning of the balance phase and is 
identified by the value preceding the balance phase of 

the same foot in which the vertical force acting on the 

ground is zero.  

 

TABLE III. Employed threshold values 

Feature Literature value 

Swing phase [%]  40% from a gait cycle  

Velocity  1.4 m/s  

Stride time  1.09 s  

Cadence  90-110 steps/min  

Stride distance  150 cm  

 

2) Support Vector Machine (SVM). A support vector 

machine is a type of machine learning algorithm that performs 

classification or regression tasks for different data groups. 

This technique creates a hyperplane that separates data from 

two different classes.  

In order to differentiate normal gait patterns from PD gait 

patterns, we experimented with different SVM parameters. 

Both a Linear and a Gaussian kernel were used. A Linear 

kernel is recommended when the data is linearly separable. 

The Gaussian kernel is an example of a basic radial functional 

kernel. The SVM classifier with the Gaussian kernel is simply 

a weighted linear combination of the kernel function 

computed between a data point and each of the support 

vectors. 

IV. EXPERIMENTAL RESULTS 

A.  Database  

The dataset used in this study was downloaded from 

Physionet [9], “Gait in Parkinson's Disease” database [10]. It 

consists of measures of gait from 93 patients with PD and 73 

 

TABLE IV. Database 

Database  Healthy Subjects  PD Patients  

Si 17 29 

Ju 25 29 

Ga 18 28 

Mean age 66.3 years 66.3 years 

Gender 55 % male 63% male 

 

healthy subjects. The database includes the vertical ground 

reaction force records of subjects as they walked at their usual,  

self-selected pace for approximately 2 minutes on level 

ground. Underneath each foot, there were 8 sensors measuring 

force. The output of each of these 16 sensors has been 

digitized and recorded at a sampling rate of 100 Hz. The 

records also included two signals that reflect the sum of the 8 

sensor outputs for each foot [9]. The database comprises 3 

different experiments called “Si”, “Ju” and “Ga” [8][11][12]. 

These are summarized in Table IV.  

During the experiment, the patients followed the 

medication prescribed by the doctors. According to the 

experiment protocol, the patients moved at their normal 

walking pace for two minutes. Additional information on 

every patient’s speed, height and weight is also included in the 

dataset.  

B. Validation  

A k-fold cross-validation method was used, that partitions 

the data into three and five sets or folds. For each set it trains a 

model and assesses its performance. Multiple combinations of 

features, kernel types and number of folds were tested for 

obtaining the most accurate results.  

C. Statistical Analysis  

One-way analysis of variance (ANOVA) test was used to 

determine if there are any significant differences between the 

mean values of the two groups, healthy subjects and PD 

patients.  

In Figure 4, there is an example of an ANOVA analysis of 

the step distance for the two groups of subjects. The minimum 

value is 0.46 m for the healthy subjects and 0.3 m for the PD 

patients, the mean value is 0.66m for the healthy subjects and 

0.54m for the PD patients and the maximum value is 0.8m for 

the healthy subjects and 0.65m for the PD patients. Significant 

differences between the mean values of the two classes was 

observed by obtaining p-values smaller than 0.05. The other 

parameters were similarly analyzed and all yielded significant 

differences between the two groups.  

D. Classification Results  

Using the SVM classifier, high accuracy values were 

obtained for all three groups considering different features. 

The results of the classification and the input features are 

described in Table V. The best result in terms of accuracy is 

obtained on the “Ju” and “Si” study group using a Gaussian 

kernel for classification. However, the validation method and 

the input features were different. 
 



 

Figure 4. ANOVA representation for step length that provides information 

about minimum, mean and maximum values of the step length for the two 
classes of patients in the study group “Ju”. 

TABLE V. Best accuracy rates obtained for the three test groups. 

Group of 

study 

Accuracy 
rate 

Features Algorithm 
characteristics 

“Ju” 

100% Stride length, stride time. 
Gaussian kernel, 

three folds. 

90.9% 
Swing and stance phases, 

stride length, step length. 

Gaussian kernel, 

five folds. 

88.88% 
Stride length, stride time, step 

length. 

Linear kernel, five 

folds. 

“Ga” 88.88% 

Swing and stance phases, 
stride time and length, step 

time and length, cadence, heel 

force. 

Gaussian kernel, 

five folds. 

“Si” 100% 

Swing and stance phases, 
stride time and length, step 

time and length, cadence, heel 

force, maximal weight 
acceptance. 

Gaussian kernel, 
five folds 

TABLE VI. Comparison between the accuracies obtained in this study and the 

results from other studies. 

Group of 

study 

This study: 

SVM 

Gaussian 

kernel 

Reference 

method: 

Threshold-

based 

Shyam et. 

al [15] 

Alam et. al 

[16] 

“Ju” 100% 57.4% 92.5% - 

“Ga” 88.88% 73.3% 92.5% 83.1% 

“Si” 100% 57.4% 90% - 

 

The results of the classification obtained with a Gaussian 

Kernel SVM are compared with the reference threshold 

method and some of the results available from literature. The 

comparison is presented in Table VI. The machine learning 

algorithm significantly outperforms the threshold-based 

reference method. Higher accuracies are obtained than those 

found in literature. 

V. CONCLUSIONS 

In this study, a machine learning approach and a threshold-

based algorithm were investigated on a database of gait data of 

healthy subjects and PD patients. By using VGRF, this paper 

proposed a set of features which can successfully differentiate 

pathological from healthy gait. The most accurate classifier 

was found using a Gaussian Kernel SVM, in a three-fold 

validation for “Ju” group and five-folds for “Si” and “Ga”. 

The best classification was obtained from features based on 

stride, swing and step phases. The threshold-based PD 

detection does not show a good performance as the values 

extracted from the literature vary over a large range. Our 

results show that these thresholds cannot be used as a safe 

threshold for disease detection. Taking into consideration the 

performances of other studies, the machine learning algorithm 

used in this study showed better results.  

For future work, the goal is to create a real-time algorithm 

based on clinical data. Other classification methods can be 

used (LDA, neural networks) in order to obtain a higher 

accuracy. 
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