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Abstract— Sleep stage detection algorithms can significantly 

reduce the workload of manual sleep staging and in improving 

sleep disorder diagnostics. In this paper, we focus on the 

automatic detection of sleep stages from a frontal channel EEG 

using expert defined features in both time and frequency domain, 

fed to a random forest classifier. The proposed approach shows 

that using a single frontal channel EEG signal as input to 

automated sleep scoring algorithms is as effective as using EEGs 

recorded from the central and occipital regions. Mean overall 

accuracy, precision and recall were respectively of 72.98%, 

79.75% and 71.83%, when validating our method on the MGH 

(Massachusetts General Hospital), You snooze, you win dataset. 

Keywords — Sleep Scoring; Single Channel EEG; Random 

Forests. 

I. INTRODUCTION 

Sleep disorders are diagnosed and characterized clinically 

through the analysis of polysomnographic (PSG) data. In a 

PSG study, the physiological parameters of the patient are 

monitored during sleep. Several biomedical signals are 

included in typical PSG studies: one or more 

electroencephalographic (EEG) channels, electrooculograms 

(EOG), electromyograms (EMG) placed on the submental and 

tibialis muscles, electrocardiogram leads (ECG), oxygen 

saturation (SaO2), several signals used for tracking respiration 

either by measuring the respiratory effort through chest and 

abdominal belts or by tracking airflow through cannulas or 

masks. 

Normal sleep in adult humans can be characterized by 

several sleep stages. Anomalies observed during sleep stages 

can provide clues for the diagnosis and treatment of sleep 

disorders. The golden standard for determining sleep stages is 

the manual scoring of PSG recordings by clinicians. This is 

performed via a tedious visual analysis of the PSG data 

divided into 30 second epochs according to recognized sleep 

scoring guidelines. The most recent AASM (American 

Academy of Sleep Medicine) guidelines propose 4 stages of 

sleep: NR1 (light sleep), NR2 (non-REM sleep), NR3 (deep 

sleep), and REM (rapid eye movement) [1]. 

Automated sleep staging can ease the burden on clinicians 

and help them provide a faster diagnosis. Several algorithms 

for automatic sleep staging have already been proposed. An 

overview of the current state of the art is presented in [2]. 

Although using multiple EEG channels as input to 

automatic scoring algorithms has proven to give good results 

[3], using single channel EEGs has also proven effective. Most 

algorithms for automatic sleep scoring with single channel 

EEG as input focus on central or parietal EEG channels as 

these positions are recommended in the AASM guidelines. 

Fraiwan et. al [4] use the C3 channel with a Random Forest 

classifier in a hold-out validation resulting in an accuracy over 

all classes of 83%. Hassan et. al [6] focus on the Pz EEG 

channel, also with a random forest classifier with a result of 

90.38% accuracy. Most studies use different features extracted 

from the signals and feed them into a classification algorithm. 

Other approaches like the one of Tsinalis et. al [5], use raw 

EEG data with a convolutional neural network resulting in an 

accuracy of 76%. 

The present work focuses on the automatic detection of 

sleep stages from single channel frontal EEG. Obtaining 

enough accuracy from automatic sleep staging from a single 

EEG channel opens the possibility of using reduced electrode 

montages for PSG studies. This in turn could facilitate the use 

of wearable EEG headsets and remote/home monitoring of 

sleep disorders. Frontal EEGs are particularly interesting as 

data can be collected from areas proven to result in better 

quality signals with less preparation time and more stable 

connections between the sensor and the skin. The results are 

compared with the performance from other two EEG channel 

locations from the central and occipital areas.  

The paper is organized as follows. Section II provides an 

overview of the algorithm, along with a detailed description of 

the features extracted. Section III discusses the results 

obtained on the selected database and the evaluation 

framework. Section IV and last section analyzes the obtained 

results in the context of what has previously been proposed in 

literature and proposes future improvements for the current 

work.  



II. PROPOSED APPROACH 

A. Overview 

The automatic sleep scoring algorithm is based on a 

supervised learning technique. The input data is represented 

by 30s epochs from a frontal EEG channel each labeled into 

one of five classes. The five classes represent the 4 sleep 

stages (classes 1, 2, 3, 4) defined by the AASM guideline 

while class 0 represents the wakefulness state. Features are 

extracted from both time and frequency domains and are fed 

into a random forest classifier. 

B. Feature Extraction 

A total of 28 features were extracted from the single 

channel EEG data.  Each feature was extracted from 30 s of 

input data corresponding to sleep-stage annotated windows. 

The extracted features are listed in Table I. 

Time domain features describe signal amplitude levels and 

higher order statistics. The frequency domain representation of 

the signal was obtained using Welch’s method on the entire 

epoch length. Five EEG bands were considered as detailed in 

Table I. Similarly, to the expert-defined features used in [3], 

we extracted the mean power spectral density ratios between 

delta and theta, theta and alpha, as well as delta and alpha.  

Figure 1 shows a representation of the mean power 

spectrum features extracted from each EEG band on one of the 

subjects from the selected database. The diagonal plots 

represent histograms for each feature, while the other plots are 

pair-wise plots between the features. Ideal features would 

provide a very clear separation between the classes, both in the 

density distribution plots but also in pair-wise representations. 

In this case, some of the stages can clearly be differentiated, 

while for others there is a significant amount of overlap. 

C. Classification 

Random Forests (RF) are an ensemble learning method 

that combine the output of several decision trees [11]. Each 

node represents a decision on a specific attribute of the data 

which leads to other nodes. The final nodes are called leaves 

and they represent the classification labels. In RF, the outputs 

of several decision trees are merged into a final classification 

result. 

TABLE I.  LIST OF EXTRACTED FEATURES 

Name Description 

Time Domain 

meanA Mean amplitude in the time domain 

maxA Max amplitude in the time domain 

skewS Skew of the signal in time domain 

kurtosisS Kurtosis of signal in time domain 

stdS Standard deviation of signal in time domain 

Frequency Domain – EEG bands 

meanP 

Delta – 0.5-4 Hz 

Theta – 4-8 Hz 

Alpha – 8-12 Hz 

Sigma – 12-20 Hz 

Mean spectrum value in EEG 

band 

maxP Maximum spectrum value in 

EEG band 

minP Minimum spectrum value in 

EEG band 

stdF Standard deviation of EEG 

band spectrum 

kurtosisF Kurtosis of EEG band spectrum 

Frequency Domain – EEG Bands Ratio 

delta/theta Ratio between mean spectrum power in delta and 

theta band 

theta/alpha Ratio between mean spectrum power in theta and 

alpha band 

delta/alpha Ratio between mean spectrum power in delta and 

alpha band 

 
Fig. 1. Mean power spectral density for each EEG band extracted for the annotated epochs of subject tr03-0134; stageID – 0 – Wake, 1 – NR1, 2 – NR2,           

3 – NR3, 4 – REM. Each color represents the features extracted from a specific sleep stage. All features are measured in V2/Hz. The plots on the diagonal 

represent histograms of each specific feature, while the other plots are pair-wise feature plots.  



For our experiments, we chose to use a number of decision 

trees equal to 10. We experimented with the minimum number 

of samples that are required for a decision to be given by a 

leaf.  

III. RESULTS 

A. Dataset 

The dataset used for training and testing the algorithm was 

the MGH dataset used in the “You Snooze, You Win: 

PhysioNet/Computing in Cardiology Challenge from 2018” 

[9],[10].  The training set contains AASM sleep stage 

annotations that we used as ground truth for our experiments.  

The AASM guidelines have been recently introduced and 

is aimed to replace the R&K (Rechtschaffen and Kales [7]. In 

the AASM guideline, two of the deep sleep stages described in 

R&K are merged. Many studies focused on automatic sleep 

scoring are developed either using datasets that are manually 

annotated in the R&K guideline or that convert the annotations 

to the AASM guideline by merging the two deep sleep stages 

(stages 3 and 4). The latter approach might lead to the loss of 

information which might further lead to erroneous 

classifications. Therefore, we decided to contextualize our 

results with studies that exclusively use AASM labeling 

(Table II). 

The selected dataset contains PSG data from 994 subjects. 

Six EEG channels are included: F3M2, F4M1, C3M2, C4M1, 

O1M2, O2M1. For our study, we have considered data from 

the F3M2, C3M2 and O1M2 EEG channels. All subjects were 

included in the analysis. 

B. Evaluation methods 

The algorithm is validated on the selected dataset by using 

k-fold cross-validation. In k-fold cross validation, the data is 

divided into k-folds, out of which k-1 are used for training and 

the kth fold is used as a test set. The process is repeated until 

each one of the folds has been used for testing. In our case, we 

used 10-fold cross-validation. 

For multi-class classification problems, the most 

encompassing metric for algorithm performance is the 

confusion matrix. The confusion matrix provides an overview 

of all the true positives (Tp), true negatives (Tn), false 

positives (Fp) and false negatives (Fn) obtained for all the 

classes, which in our case are the sleep stages. We use a class 

normalized confusion matrix as an indication for algorithm 

performance.  

Once the confusion matrix is computed, we extract 

accuracy, precision and recall values for each class, as defined 

below: 

Accuracy = (Tp + Tn) /  (Tp +Tn + Fp + Fn) (1), 

Recall =  Tp / (Tp+Fn)  (2), 

Precision = Tp / (Tp+Fp) (3). 

C. Results and Discussion 

The performance of the proposed framework for automatic 

sleep scoring while varying the minimum number of samples 

per leaf (MSL) of the random forest classifier is presented in 

Figure 2. The best performance was obtained when the 

random forest classifier has a MSL of 10 samples per leaf. 

When using only one MSL, a slightly lower performance is 

obtained due to overfitting. When increasing the MSL, the 

performance has a decreasing trend as the requirement for a 

minimum number of observations on the terminal node does 

not allow the decision trees to branch out sufficiently 

decreasing the prediction performance. 

The mean accuracy, precision and recall over all classes in 

this case was of 72.98%, 79.75% and 71.83% respectively for 

the frontal channel F3M2. For the EEG channels from the 

central and occipital regions, a similar performance was 

obtained as shown in Table II. From these results, it can be 

concluded that the automatic sleep staging performed with the 

proposed approach on F3M2 is equivalent in performance 

when using single EEG channel data from different locations 

on the scalp (C3M2 and O2M1). The standard deviation of 

accuracy across the 10 folds validation framework is also 

reported for each one of the channels (Table II). The variation 

is equivalent across all three channels and is very low with 

respect to the mean accuracies. 

Table II also provides a comparison between our results 

and other algorithms available in literature. All studies 

presented have used datasets annotated according to the 

AASM guidelines or have converted the R&K annotations to 

the newer standard. Our results are in line with other 

experiments on sleep scoring using a single channel EEG as 

input. Although other approaches have reported slightly better 

results, the different datasets and validation techniques used 

should be considered. For instance, Biswal et. al used several 

algorithms on the entire dataset of 10.000 patients recorded at 

MGH [3]. Using all 6 EEG channels as input, the performance 

was approximately 2% higher using expert defined features 

and a random forest classifier.  

Figure 3 shows the normalized confusion matrix for the 

best performing model using the frontal channel. The 

wakefulness state was classified with the highest accuracy, 

while the REM stage with the lowest. A total of approximately 

2*106 annotated epochs were considered. The division in the 

five classes is presented in Figure 4.  The dataset considered is 

not balanced as most epochs belong to the NR2 sleep stage. 

However, this does not seem to be reflected in the 

performance of the algorithm: the accuracy for NR2 stage is of 

69% while for the wakefulness state, which is represented by a 

 
Fig. 2. Accuracy of the automated sleep scoring algorithm when varying the 
minimum number of samples per leaf (MSL). 



smaller number of samples, it is of 96%. Therefore, the 

features extracted might not properly reflect the NR1, NR2 

and REM sleep stage which presented lower performance. 

IV. CONCLUSIONS 

In this paper we investigated automatic sleep stage 

detection through a Random Forest model that uses features 

extracted from a single frontal EEG channel. The accuracy 

over all classes was of 72.98%. The performance is similar to 

the results obtained from central and occipital electrodes. This 

shows that using a frontal EEG channel for sleep scoring can 

be as effective as using single EEG channels from other 

locations on the scalp. The performance obtained using a  

frontal EEG channel is comparable to that obtained with input 

from 6 EEG channels. 

Further work for incremental improvements might 

involve a) the use of multi modal signals from PSG recordings 

and b) data balancing techniques across the 5 classes. Feature 

relevance should also be studied to potentially reduce 

computational power.  
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TABLE II.  COMPARISON WITH OTHER APPROACHES IN LITERATURE 

Study Input Channel Dataset Classification Algorithm Validation method Accuracy [%] 

Fraiwan et. al 2012 [4] C3A1  Private dataset Random Forest Hold out 83 

Tsinalis et. al 2016 [5] FpzCz  Sleep-EDF CNN 20-fold cross-validation 71-76 

Mohammadi et. al 2016 [8] C3A2  Private dataset SVM Hold out 83.6 

Biswal et. al 2017 [3] 6 EEG channels MGH extended Random Forest Hold out 75.67 

Current Study 

F3M2  

MGH Random Forest 10-fold cross validation 

72.98 ± 3.5 

C3M2  73.18 ± 3.8 

O1M2 73.09 ± 3.9 

 
Fig. 3.  Normalized confusion matrix for the Random Forest algorithm with 

10 minimum samples per leaf resulting in the highest overall accuracy. 

 

 
 

Fig. 4. Percentage of available 30s epochs from each sleep stage. 


